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Abstract

Reactions of [Cp*RhCl2]2 with 1,1%-bis(diphenylphosphinomethyl)ferrocene (dpmf) or 1,1%-bis(diphenylphosphino)ferrocene
(dppf) gave the bridged complex [Cp*RnCl2]2(m-diphos) (1: diphos=dpmf; 2: diphos=dppf). Reaction with dppf in the presence
of NaPF6 gave the cationic chelated [Cp*RhCl(dppf-P,P %)](PF6) complex 3. Complex 1 reacted with xylyl isocyanide (XylNC) in
the presence of NaPF6 to yield [Cp*2 Rh2Cl2(m-dpmf)(XylNC)2](PF6)2, 4, in low yield. [Cp*Rh(dppf-P,P %)(MeCN)](PF6)2, 5a, was
prepared from 3, NaPF6 and AgNO3 in MeCN. The acetonitrile ligand in this complex was replaced readily with Lewis bases (L),
such as CO and isocyanides, to form [Cp*Rh(dppf-P,P %)(L)](PF6)2, 5. Structures of 2, 3 and 5d (L=p-TosCH2NC) were
confirmed by X-ray analyses, in which their molecules have the piano stool structure. © 1999 Elsevier Science S.A. All rights
reserved.
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1. Introduction

The use of ferrocenyl phosphines as ligands in co-or-
dination chemistry and catalytic reactions is well-
known [1]. Many of the metal complexes of
1,1%-bis(diphenylphosphino)ferrocene (dppf) are catalyt-
ically active in some organic reactions, such as C–C
couplings [2], hydroformylation [3], etc. It has been
reported that the bite size and angle of dppf contribute
to catalytic activities [1] and the conformation of ferro-
cenyl moiety thus plays an important role. The ferro-
cenyl moiety in dppf takes a wide variety of
conformations, such as synperiplanar, synclinal, anti-

clinal, antiperiplanar, etc., when dppf co-ordinates to
the metals ([1]a).

1,1%-Bis[(diphenylphosphino)methyl]ferrocene (dpmf)
formed by introduction of a methylene group between
the cyclopentadienyl ring and P atom is less rigid than
dppf. This paper is interested in differences of struc-
tures and reactivities between dppf and dpmf. As part
of ongoing studies, the preparation of dpmf, and palla-
dium and nickel complexes of dpmf, were reported and
they have macrocyclic dinuclear or tetranuclear struc-
tures bridged by two dpmf ligands [4]. The authors
recently reported the reactions of bis[dichloro(h6-
arene)ruthenium(II)] with dpmf or dppf [5]. They now
report the synthesis, structures and reactions of the
bridged or chelating complexes derived from the treat-
ment of dpmf or dppf with bis[dichloro(h5-pen-
tamethylcyclopentadienyl)rhodium(III)], [Cp*RhCl2]2,
bearing an isoelectronic structure with bis[dichloro(h6-
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Table 1
Crystal data of [(h5-C5Me5)2Rh2Cl2(m-dppf)] 2, [(h5-C5Me5)RhCl(dppf-P,P %)](PF6) 3, and [(h5-C5Me5)Rh(dppf-P,P %)(p-
MeC6H5SO2CH2NC)](PF6) 5d

3 5dCompound 2

C44H43P3F6CLFeRhC54H55P2Cl4FeRh2Formula C53H52NO2P4Fe12SFeRh
1172.47 972.94 1277.69Molecular weight
Red–violet OrangeColor Pink

0.40×0.20×0.10 0.40×0.30×0.200.40×0.30×0.20Crystal size (mm3)
Monoclinic MonoclinicCrystal system Triclinic
P21/n (No. 14) P21/n (No. 14)Space group P1 (No. 2)

15.19(1) 14.987(2)a (Å) 16.203(5)
16.836(9) 16.734(4)b (Å) 18.081(5)

16.025(2) 20.350(4)c (Å) 12.36(1)
90.090.0a (°) 104.75(5)

92.94(1) 105.35(2)b (°) 111.61(5)
90.0 90.0g (°) 95.39(5)

2780(4) 4013(1)V (Å3) 5749(2)
42Z 4

1.610 1.476Dcalc. (g cm−3) 1.400
10.18 7.64m, (cm−1) 5.38

1192 1976F(000) 2592
9811 7336No. of reflections 10 509

28462854No. of data (I\3.0s(I)) 4332
511505No. of variables 558
0.068; 0.0750.054; 0.062R ; Rw

a 0.079; 0.097
1.981.51GOFb 2.73

a R=� ��Fo�−�Fc��/� �Fo� and Rw= [� w(�Fo�−�Fc�)2/� w �Fo�2]1/2 (w=1/s2(Fo)).
b GOF= [� w(�Fo�−�Fc�)2/� (No−Nv)]1/2, where No=number of data, Nv=number of variables.

arene)ruthenium(II)]. A preliminary part of this study
has been described [6].

2. Experimental

All reactions were carried out under nitrogen atmo-
sphere. Bis[dichloro(h5-pentamethylcyclopentadi-
enyl)rhodium(III)] [7], dpmf [4], dppf [8] and
isocyanides (2,6-Me2C6H3NC (=XylNC), 2,4,6-
Me3C6H2NC (=MesNC)) [9] were prepared according
to the literature. p-MeC6H4SO2CH2NC (=
TosCH2NC) was commercially available. (l)-3-(PhMe-
HCNHCO)C6H4NC was given by Miss F. Takei of
Osaka University. Dichloromethane and diethyl ether
were distilled over CaH2. The IR spectra were mea-
sured on an FT/IR-5300. NMR spectroscopy was car-
ried out on a Bruker AC250. 1H-NMR spectra were
measured at 250 MHz and 31P{1H}-NMR spectra were
measured at 101 MHz using 85% H3PO4 as an external
reference.

2.1. Preparation of [Cp*RhCl2]2(m-dpmf ), 1

To a solution of [Cp*RhCl2]2 (31 mg, 0.05 mmol) in
CH2Cl2 (10 ml), dpmf (29 mg, 0.05 mmol) was added at
room temperature (r.t.). After stirring for 2 h, the
solvent was reduced to ca. 3 ml under reduced pressure
and diethyl ether was added to give red–orange crystals

of 1 (42 mg, 70%). 1H-NMR(CDCl3): d (ppm) 1.29 (d,
JPH=3.4 Hz, C5Me5), 3.19, 3.62 (s, C5H4), 3.67 (d,
JPH=3.4 Hz, PCH2), 7.3–7.7 (m, Ph). 31P{1H}-NMR
(CDCl3): d (ppm) 33.86 (d, JRhP=141 Hz). Anal. Calc.
for C56H62C4P2FeRh2: C, 56.03; H, 5.21. Found: C,
56.26; H, 5.00.

Complex [Cp*RhCl2]2(m-dppf) 2 (78%) was prepared
from the reaction of [Cp*RhCl2]2 with dppf according
to a method similar to that for 1. 1H-NMR (CDCl3, at
r.t.): d (ppm) 1.21 (d, JPH=3.4 Hz, C5Me5), ca. 4.0 (b,
C5H4), 7.2–7.9 (m, Ph); (at 50°C): d (ppm) 1.23 (d,
JPH=3.4 Hz, C5Me5), 4.07, 4.16 (b, C5H4), 7.2–7.8 (m,
Ph). 31P{1H}-NMR (CDCl3 at r.t.): d (ppm) ca. 22 (b);
(at 50°): d (ppm) 22.98 (d, JRhP=146 Hz). Anal. Calc.
for C54H58C4P2FeRh2: C, 55.32; H, 4.99. Found:
C,54.72;H, 4.79.

2.2. Preparation of [Cp*RhCl(dppf-P,P %)](PF6), 3

To a solution of [Cp*RhCl2]2 (31 mg, 0.05 mmol)
and dppf (56 mg, 0.1 mmol) in a mixture of CH2C12 (5
ml) and acetone (5 ml), NaPF6 (84 mg, 0.5 mmol) was
added at r.t. After the mixture was stirred for 3 h, the
solvent was removed under reduced pressure. The
residue was extracted with CH2CI2 (2×10 ml). The
solution was concentrated to ca. 3 ml and diethyl ether
was added to give red–orange crystals of 3 (82 mg,
84%). IR (nujol): 841 cm−1 (PF6). 1H-NMR
(CD3COCD3): d (ppm) 1.20 (t, JPH=3.7 Hz, C5Me5),
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Scheme 1. Reactions of [(h5-C5Me5)RhCl2]2 and its related complexes. (P—P=dmpf-P,P% for 1 and 4; dppf-P,P% for 2, 3 and 5: L=CO, RN).

4.27, 4.48, 4.53, 5.19 (s, C5H4), 7.5–7.9 (m, Ph).
31P{lH}-NMR (CD3COCD3): d (ppm) 37.94 (d, JRhP=
145 Hz, dppf), −143.1 (sep. JPF=707 Hz, PF6). Anal.
Calc. for C44H43Cl2P3F6FeRh2: C, 57.07; H, 5.43.
Found: C, 56.65; H, 5.12.

2.3. Preparation of
[Cp*2Rh2Cl2(m-dpmf )(XylNC)2](PF6)2, 4

To a solution of 1 (60 mg, 0.05 mmol) and xylyl
isocyanide (13 mg, 0.1 mmol) in a mixture of CH2Cl2 (5
ml) and acetone (5 ml), NaPF6 (84 mg, 0.5 mmol) was
added at r.t. After the mixture was stirred for 3 h, the
solvent was removed under reduced pressure. The
residue was extracted with CH2Cl2 (2×10 ml). The
solvent was removed to dryness and recrystallization of
the residual oil from MeOH/diethyl ether gave orange
crystals of 4 (8 mg, 11%). IR (nujol): 2170 (N�C), 841
cm−1 (PF6). 1H-NMR (CD2Cl2): d (ppm) 1.44 (d,
JPH=3.6 Hz, C5Me5), 2.16 (s, o-Me), 2.60, 2.96, 3.15,
3.99 (s, C5H4), 333 (t, JHH=JPH=15 Hz, PCH), 3.79
(q, JHH=15 Hz, JPH=7.5 Hz, PCH), 7.0–7.8 (m, Ph).

31P{1H}-NMR (CD2Cl2): d (ppm) 39.69 (d, JRhP=123
Hz, dpmf), −142.5 (sep., JPF=711 Hz, PF6). Anal.
Calc. for C74H80Cl2N2P4F12FeRh2: C, 52.85; H, 4.79;
N, 1.67. Found: C, 52.69; H, 4.50; N, 1.67.

2.4. Preparation of [Cp*Rh(dppf-P,P %)(MeCN)](PF6)2,
5a

To a solution of 3 (97 mg, 0.10 mmol) and NaPF6

(84 mg, 0.5 mmol) in MeCN (20 ml), AgNO3 (17 mg,
0.1 mmol) was added at r.t. After stirring for 3 h, the
solvent was removed under reduced pressure. The
residue was extracted with CH2Cl2 (2×10 ml). The
solution was concentrated to ca. 5 ml and diethyl ether
was added to give brown crystals of 5a (86 mg, 77%).
IR (nujol): 2313, 2278 (C�N), 841 cm−1 (PF6). 1H-
NMR (CD3COCD3): d (ppm) 1.32 (t, JPH=3.9 Hz,
C5Me5), 3.43 (s, MeCN), 4.47, 4.64, 4.75, 4.92 (s,
C5H4), 7.7–8.0 (m, Ph). 31P{1H}-NMR (CD3COCD3):
d (ppm) 41.74 (d, JRhp=133 Hz, dppf), −143.1 (sep.,
JPF=707 Hz, PF6). Anal. Calc. for

Fig. 2. Structure of 3. The PF6 and hydrogen atoms were omitted for
clarity.Fig. 1. Structure of 2. Hydrogen atoms were omitted for clarity.
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Fig. 3. Structure of 5d. The PF6 and hydrogen atoms were omitted
for clarity.

Analogously, other isocyanide complexes
[Cp*Rh(dppf-P,P %)(RNC)](PF6)2 (5c: R=Mes; 5d:
R=p-TosCH2; 5e: 3-(l)-PhCHMeNHCO)C6H4)] were
prepared from the substitution reaction of 5a with the
appropriate isocyanide. 5c (pink, yield 95%): IR (nujol):
2153 (N�C), 837 cm−1 (PF6). 1H-NMR (CD3COCD3):
d (ppm) 1.49 (t, JPH=3.9 Hz, C5Me5), 2.41 (s, o-Me),
2.44 (s, p-Me), 4.60, 4.75, 4.79, 4.85 (s, C5H4), 7.26 (s,
m-H of MesNC), 7.8–8.0 (m, Ph). 31P{1H}-NMR
(CD3COCD3): d (ppm) 42.82 (d, JRhP=127 Hz, dppf),
−143.1 (sep., JPF=707 Hz, PF6). Anal. Calc. for
C54H54NP4F12FeRh: C, 52.83; H, 4.43; N, 1.14. Found:
C, 52.17; H, 4.48; N, 0.99.

5d (brown, yield 91%): IR (nujol): 2186 (N�C), 1595
(SO2), 843 cm−1 (PF6). 1H-NMR (CD3COCD3): d

(ppm) 1.49 (t, JPH=3.9 Hz, C5Me5), 2.57 (s, p-Me),
4.51, 4.65, 4.83, 5.12 (s, C5H4), 6.70 (s, CH2), 7.6–8.2
(m, Ph). 31P{1H}-NMR (CD3COCD3): d (ppm) 47.09
(d, JRhP=127 Hz, dppf), −143.1 (sep., JPF=707 Hz,
PF6). Anal. Calc. for C53H52NO2SP4F12FeRh: C, 49.82;
H, 4.10; N, 1.10. Found: C, 49.85; H, 3.92; N, 1.23.

5e (brown, yield 81%): IR (nujol): 3401 (NH), 2164
(N�C), 1657 (C�O), 839 cm−1 (PF6). 1H-NMR
(CD3COCD3): d (ppm) 1.53 (t, JPH=3.9 Hz, C5Me5),
1.63 (d, JHH=7.0 Hz, CH3), 4.54, 4.65, 4.89, 4.92 (s,
C5H4), 5.38 (q, JHH=7.0 Hz, CH), 7.3–8.6 (m, Ph).
31P{1H}-NMR (CD3COCD3): d (ppm) 47.14 (d, JRhP=
127 Hz, dppf), −143.1 (sep., JPF=707 Hz, PF6). Anal.
Calc. for C60H57N2OP4F12FeRh: C, 54.07; H, 4.31; N,
2.10. Found: C, 53.62; H, 4.20; N, 2.22.

2.6. Preparation of [Cp*Rh(dppf-P,P %)(CO)](PF6)2, 5f

Through a solution of 5a (25 mg, 0.022 mmol) in
CH2Cl2 (10 ml), CO was bubbled for 10 min at r.t.
After stirring for 1 h, the solution was concentrated to
ca. 3 ml and diethyl ether was added to give brown
crystals of 5f (12 mg, 53%). IR (nujol): 2074 (C�O), 839
cm−1 (PF6). 1H-NMR (CD3COCD3): d (ppm) 1.62 (t,
JPH=4.1 Hz, C5Me5), 4.62, 4.80, 5.00, 5.26 (s, C5H4),
7.8–8.1 (m, Ph). 31P{1H}-NMR (CD3COCD3): d (ppm)
49.98 (d, JRhP=122 Hz, dppf), −143 2 (sep., JPF=707
Hz, PF6). Anal. Calc. for C45H43OF12P4FeRh: C, 48.67;
H, 3.90. Found: C, 48.65; H, 4.12.

2.7. Crystallography

Complexes 2, 3 and 5d were recrystallized from
CH2Cl2/diethyl ether. Cell constants were determined
from 15–20 reflections on a Rigaku four-circle auto-
mated AFC5S diffractometer. The crystal along with
data collection parameters are summarized in Table 1.
Data collection was carried out on a Rigaku AFC5S
diffractometer. Intensities were measured by the 2u–v

scan method using graphite-monochromated Mo–Ka

radiation (l=0.71069 Å). Throughout the data collec-

C46H46N2P4F12FeRh: C, 49.18; H, 4.13; N, 1.25.
Found: C, 48.82; H, 3.84; N, 1.21.

2.5. Preparation of [Cp*Rh(dppf-P,P %)(XylNC)](PF6)2,
5b

To a solution of 5a (25 mg, 0.022 mmol) in CH2Cl2
(10 ml), xylyl isocyanide (4 mg, 0.03 mmol) was added
at r.t. After stirring for 2 h, the solution was concen-
trated to ca. 3 ml and diethyl ether was added to give
pink crystals of 5b (22 mg, 80%). IR (nujol): 2147
(N�C), 841 cm−1 (PF6). 1H-NMR (CD2Cl2): d (ppm)
1.32 (t, JPH=3.9 Hz, C5Me5), 2.30 (s, o-Me), 4.46,
4.54, 4.57 (s, C5H4), 7.3–8.0 (m, Ph). 31P{1H}-NMR
(CD2Cl2): d (ppm) 43.22 (d, JRhP=127 Hz, dppf),
−142.6 (sep., JPF=713 Hz, PF6). Anal. Calc. for
C53H52Np4F12Rh: C, 52.45; H, 4.32; N, 1.15. Found: C,
51.96; H, 4.08; N, 1.15.

Table 2
Selected bond lengths and angles of [(h5-C5Me5)2Rh2Cl2(m-dppf)] 2a

Bond length (Å)
2.388(5)Rh�Cl(2)2.394(5)Rh�Cl(1)

2.349(5)Rh�P(1)

Rh�Cav(Cp*) Fe�Cav(Cp) 2.052.19

Bond angles (°)
92.5(2) Cl(1)�Rh�P(1) 88.1(2)Cl(1)�Rh�Cl(2)

Cl(2)�Rh�P(1) 110.2(6)Rh�P(l)�C(11)89.9(2)
116.3(6)119.3(6) Rh�P(l)�C(23)Rh�P(1)�C(17)

100.7(8) C(ll)�P(1)�C(23) 104.5(7)C(11)�P(1)�C(17)
C(17)�P(1)�C(23) C(23)�Fe�C(28)103.8(8) 158.6(7)

Torsion angle (°)
Rh�P(2)�C(28)�FeRh�P(1)�C(23)�Fe −84(1)−84(1)

P(1)�C(23) 74(2)72(2) P(2)�C(28)

�Fe�C(23)�Fe�C(28)

a Cp*=C5Me5, Cp=C5H4.
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Table 3
Selected bond lengths and angles of [(h5-C5Me5)RhCl(dppf-
P,P %)](PF6) 3a

Bond length (Å)
Rh�P(1) 2.364(3)Rh�Cl(1) 2.411(3)

2.365(3) Rh�Cav(Cp)Rh�P(2) 2.25
2.02Fe�Cav(Cp)

Bond angle (°)
Cl(1)�Rh�P(2) 90.0(1)88.9(1)Cl(1)�Rh�P(1)
Rh�P(1)�C(1) 119.6(4)P(1)�Rh�P(2) 95.6(1)

107.4(4)C(1)�Fe�C(6)Rh�P(2)�C(6) 120.4(4)
131.5(6) P(2)�C(6)�FeP(1)�C(1)�Fe 129.7(6)

Torsion angle (°)
26.3(10)Rh�P(2)�C(6)�FeRh�P(1)�C(1)�Fe −04(1)

−0.8(10) P(2)�C(6)P(1)�C(1) 0.1(9)

�Fe�C(1)�Fe�C(6)

a Cp*=C5Me5, Cp=C5H4.

MeOC6H3)] [13]. Arbitrary a- or b-protons of the
ferrocenyl rings of dpmf complex 1 showed two singlets
at d 3.19 and 3.62 ppm, whereas those of dppf 2
appeared at ca. d 4 ppm as a broad peak, in which a-
and b-protons could not be distinguished within the
NMR time scale at ambient temperature. When it was
measured at 50°C, the spectrum separated as two broad
peaks at d 4.07 and 4.16 ppm. In the 31P{1H}-NMR
spectra, complex 1 showed a doublet at d 33.86 ppm
(JRhP=141.0 Hz), but 2 showed a broad peak at d

21.80 ppm without showing a clear JPH coupling con-
stant value, as well as in the 1H-NMR spectrum. The
spectrum at 50°C showed a doublet consisting of
JRhP=146.2 Hz. The elemental analysis and spectro-
scopic results showed that the molecule has a dimeric
structure bridged by the dpmf or dppf ligand. The
X-ray analysis of 2 supported the proposed structure
(Fig. 1).

When [Cp*RhCl2]2 was treated with two equivalents
of dppf in the presence of excess NaPF6 at r.t., red–or-
ange crystals, 3, formulated as [Cp*RhCl(dppf)](PF6)
were obtained in high yield. Complex 3 was also pre-
pared by the reaction of 2 with dppf in the presence of
NaPF6. The IR spectrum showed a strong peak at 841
cm−1 due to a PF6 group. The 1H-NMR spectrum in
CD3COCD3 showed a triplet at d 1.20 ppm for the Cp*
protons and four singlets in the range from d 4.2 to 5.2
ppm for the ferrocenyl ring protons, as has been ob-
served in [(h6-arene)RuCl(dppf P,P %)](PF6) having the
chelated structure [5]. The X-ray analysis showed the
dppf chelated structure (Fig. 2). A similar reaction with
dpmf was carried out in the presence of excess NaPF6,
and a trace of yellow powder was obtained, but it could

tion, the intensities of the three standard reflections
were measured every 200 reflections as a check of the
stability of the crystals and no decay was observed.
Intensities were corrected for Lorentz and polarization
effects. The absorption correction was made with em-
pirical c rotation. Atomic scattering factors were taken
from the usual tabulation of Cromer and Waber [10].
Anomalous dispersion effects were included in Fcalc [11];
the values of Df % and Df %% were those of Creagh and
McAuley [12]. All calculations were performed using
the teXsan crystallographic software package of the
Molecular Structure Corporation.

The structures of 2, 3 and 5d were solved by Patter-
son methods (DIRDIF92) and refined by a full-matrix
least-squares methods based on F values. All non-hy-
drogen atoms for 2 and 3 were refined anisotropically,
and hydrogen atoms were calculated at the ideal posi-
tions with the C�H distance of 0.95 Å. For 5d, 33
carbon atoms were refined isotropically and other non-
hydrogen atoms, anisotropically. Final difference
Fourier syntheses of 2 and 3 had no peak greater than
2.08 eÅ−3.

3. Results and discussion

3.1. Reactions of [Cp*RhCl2]2 with dpmf or dppf

When [Cp*RhCl2]2 was treated with dpmf or dppf in
a 1:1 ratio at r.t., red–orange crystals, formulated as
[Cp*RhCl2]2(dpmf) 1 or [Cp*RhCl2]2(dppf) 2, were ob-
tained in ca. 70% yields (Scheme 1). In the 1H-NMR
spectra (CDCl3) the pentamethylcyclopentadienyl
groups appeared at d 1.29 ppm for 1 and d 1.21 ppm
for 2 as a doublet consisting of the coupling constant
value of JPH=3.4 Hz. A similar P–H coupling behav-
ior has been observed in Cp*RhCl2[PPh2(2-O-6-

Table 4
Selected bond lengths and angles of [(h5-C5Me5)Rh(dppf-P,P %)(p-
MeC6H4SO2CH2NC)] (PF6)2 5da

Bond length (Å)
Rh�P(2)2.387(4) 2.397(5)Rh�P(1)

2.02(2) C(45)�N(1) 1.10(2)Rh�C(45)
1.37(2)N(1)�C(46) C(46)�S(1) 1.81(2)

1.40(1)S(1)�O(2)S(1)�O(1) 1.41(1)
2.27Rh�Cav(Cp*) Fe�Cav(Cp) 2.01

Bond angle (°)
97.0(2) 90.8(5)P(1)�Rh�P(2) P(1)�Rh�C(45)
89.4(5)P(2)�Rh�C(45) Rh�P(1)�C(6) 118.2(6)

Rh�P(2)�C(1) 119.3(5) C(1)�Fe�C(6) 110.3(7)
P(1)�C(6)�Fe 131.9(10) P(2)�C(1)�Fe 126.8(9)

170(1)Rh�C(45)�N(1) C(45)�(N1)�C(46) 178(1)
106.5(9)C(46)�S(1)�0(1)109(1)N(1)�C(46)�S(1)

106.8C(46)�S(1)�O(2) C(47)�S(1)�0(1) 109.9(9)
C(47)�S(1)�O(2) 110.0(8)

Torsion angle (°)
Rh�P(1)�C(6)�Fe −14(1) Rh�P(2)�C(1)�Fe 33(1)

−7(1)P(1)�C(6)�Fe�C(1) P(2)�C(1)�Fe�C(6) 3(1)

a Cp*=C5Me5; Cp=C5H4.
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Table 5
Structural parameters of the ferrocenyl skeleton

P···P (Å) ConformationdP (°)cComplex CA�Fe�CB (°)t, (°)a u (°)b

6.84 Anticlinal (eclipsed)2 142.9 3.33 −0.28, −0.25 158.6(7)
Synperiplanar3.50107.4(4)3 −0.17, −0.133.0 2.95

110.3(7) 3.585d −2.5 0.97 −0.06, −0.23 Synperiplanar

a The torsion angle is defined as CA�XA�XB�CB, where CA is carbon atom in Cp ring A that is bonded to a P atom (likewise for CB), and XA

and XB are the centroids of the two Cp rings.
b u is the dihedral angle between the two Cp rings.
c dP is the deviation of the linked P atom from the same plane. A positive sign means that the P atom is on the same side of the Cp* ring as

the Fe atom.

not be characterized. No chelated complexes were
obtained.

3.2. Reactions of the dpmf and dppf complexes (1, 2
and 3)

When complex 1 was treated with xylyl isocyanide in
the presence of NaPF6, replacement of a Cl anion with
the isocyanide occurred to give red–orange crystals, 4,
formulated as [Cp*2 Rh2Cl2(XylNC)2(dpmf)](PF6)2 from
the elemental analysis, as depicted in Scheme 1. How-
ever, a similar reaction with dppf complex 2 did not
give any isolatible complexes. The IR spectrum of 4
showed two characteristic bands at 2170 and 841 cm−1,
suggesting the presence of the terminal isocyanide and
PF6 groups.

An attempt to replace a Cl anion of 3 with an
isocyanide in the presence of NaPF6 was carried out in
a mixture of CH2Cl2 and MeOH, and the starting
material 3 was recovered. However, when AgNO3 was
added to a mixture of 3 and NaPF6 in MeCN, brown
crystals of 5a, formulated as [Cp*Rh(dppf)(MeCN)]
(PF6)2, were obtained in 77% yield. The IR spectrum
showed the presence of the C�N bond and PF6 group.
The 1H-NMR spectrum in CD3COCD3 indicated a
triplet at d 1.32 ppm and a singlet at d 3.43 ppm,
assignable to the Cp* and acetonitrile protons, respec-
tively. Each of the ferrocenyl protons also appeared as
four singlets derived from the chelated structure. A
similar acetonitrile complex of ruthenium(I),
[Cp*Ru(dppf)(MeCN)](BF4)] has been prepared from
the reaction of [Cp*RuCl(dppf)] with AgBF4 in MeCN
[14]. The acetonitrile ligand of 5a was readily replaced
with Lewis bases such as isocyanide and CO to give the
corresponding complex [Cp*Rh(dppf-P,P %)(L)](PF6)2

(5b: L=XylNC; 5c: L=MesNC; 5d: TosCH2NC; 5e:
L= (l)-3-(PhMeHCNHCO)C6H3NC; 5f: L=CO)
(Scheme 1). The detailed structure was confirmed by
X-ray analysis of 5d (Fig. 3).

In the 31P{1H}-NMR spectra of 5 in CD3COCD3, the
chemical shift of the chelated ligand increased in the

order as MeCNBMesNCBTosCH2NC, (l)-3-(PhCH-
MeNHCO)C6H3NCBCO, and a similar fashion was
also observed for the chemical shift of the methyl
protons on the Cp* ring. Increase of p-acceptor ability
of ligands was accompanied by the result of the down-
field shift of the chemical shift of the Cp* protons and
the P nuclei. This suggested that the electron density on
the P and Cp* ring decreased with increase of p-accep-
tor ability. A similar trend has been observed in the
chelated diphosphine complexes, [(h6-arene)Rh(diphos)]-
(BF4) [15].

3.3. Structures of 2, 3 and 5d

The selected bond lengths and angles, and structural
parameters of the ferrocenyl skeleton are summarized
in Tables 2–5. The conformations of ferrocenyl skele-
ton are classified by six categories from the torsion
angles of t [1], in which the conformation between two
ferocenyl rings are anticlinal (eclipsed) with the P···P
separation of 6.84 Å for 2 and synperiplanar with the
P···P separation of ca. 3.5 Å for 3 and 5d. The dihedral
angles between two ferrocenyl rings are 1–3°, not being
different from those found in arene–ruthenium com-
plexes containing dpmf or dppf ligand [5].

4. Supplementary materials

Complete atomic co-ordinates, thermal parameters,
bond lengths and angles, and a listing of observed and
calculated structure factors are available from Y. Ya-
mamoto on request.
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